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Results are presented for a numerical simulation of vortex-induced vibrations of a
circular cylinder of low non-dimensional mass (m∗ = 10) in the laminar flow regime
(60 < Re < 200). The natural structural frequency of the oscillator, fN , matches the
vortex shedding frequency for a stationary cylinder at Re = 100. This corresponds
to fND2/ν =16.6, where D is the diameter of the cylinder and ν the coefficient of
viscosity of the fluid. A stabilized space–time finite element formulation is utilized to
solve the incompressible flow equations in primitive variables form in two dimensions.
Unlike at high Re, where the cylinder response is known to be associated with three
branches, at low Re only two branches are identified: ‘initial’ and ‘lower’. For a
blockage of 2.5 % and less the onset of synchronization, in the lower Re range, is
accompanied by an intermittent switching between two modes with vortex shedding
occurring at different frequencies. With higher blockage the jump from the initial to
lower branch is hysteretic. Results from free vibrations are compared to the data from
experiments for forced vibrations reported earlier. Excellent agreement is observed
for the critical amplitude required for the onset of synchronization. The comparison
brings out the possibility of hysteresis in forced vibrations. The phase difference
between the lift force and transverse displacement shows a jump of almost 180◦ at,
approximately, the middle of the synchronization region. This jump is not hysteretic
and it is not associated with any radical change in the vortex shedding pattern.
Instead, it is caused by changes in the location and value of the maximum suction on
the lower and upper surface of the cylinder. This is observed clearly by comparing the
time-averaged flow for a vibrating cylinder for different Re. While the mean flow for
Re beyond the phase jump is similar to that for a stationary cylinder, it is associated
with a pair of counter-rotating vortices in the near wake for Re prior to the phase
jump. The phase jump appears to be one of the mechanisms of the oscillator to
self-limit its vibration amplitude.

1. Introduction
Flow past a circular cylinder has been a subject of interest for a long time. Despite its

simple geometry, it is associated with rich phenomena, many of which are common to
other bluff body flows. It is well known that beyond Re ∼ 47 the cylinder experiences
unsteady aerodynamic forces due to alternate vortex shedding. It can undergo vortex-
induced vibrations (VIV) if it is mounted on elastic supports. The cylinder motion
can significantly alter the vortex pattern in the wake. A well-known effect is the
synchronization/lock-in of the vortex shedding frequency to the oscillation frequency
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of the body over a range of Reynolds numbers. For a comprehensive review of the
research on various aspects of vortex-induced vibrations, the reader is referred to
the review articles by Williamson & Govardhan (2004), Sarpkaya (1979, 2004) and
Bearman (1984).

It is known from the pioneering works of Feng (1968) and Bishop & Hassan
(1964) that the lock-in phenomenon is accompanied by jumps in transverse vibration
amplitude (A/D) and fluid forces on the body. In addition, the phase difference
between the cylinder displacement and fluid forces also shows a sharp change. The
exact point of the jump shows hysteresis and depends on whether the point is on
the decreasing- or increasing-velocity curve. Khalak & Williamson (1999) conducted
experiments involving transverse oscillations of an elastically mounted rigid cylinder
at very low mass–damping, m∗ζ (5000 � Re � 16000). They showed that, depending
on the value of the combined mass–damping parameter the response of the cylinder
can be one of two types. For low m∗ζ the response consists of three branches:
initial excitation, upper and lower. The transition between the initial and upper
branches involves hysteresis. Intermittent switching of flow modes is observed for
the transition between the upper and lower branches. Using flow visualization they
have shown that the initial branch is associated with the 2S mode of vortex shedding
(classical Kármán street with a single vortex released from each side of the cylinder
in one cycle of shedding). The 2P mode of shedding (a vortex pair is released
from each side of the cylinder during a cycle of shedding) is observed on the lower
branch. Hysteresis with respect to transition between initial and upper branches is
observed for a range of reduced velocities (U ∗ = 4.45 − 4.70). The reduced velocity
is defined as U ∗ = U/f D, where, U is the free-stream speed, D the diameter of
the cylinder, and f the vibrating frequency of the cylinder. For high m∗ζ only
two response branches are seen. This is often referred to as the classical Feng-type
response.

Brika & Laneville (1993) in their experimental investigation of VIV of a long
flexible circular cylinder with low damping ratio observed hysteresis in the transverse
displacement of the cylinder with variation of flow velocity (3400 � Re � 11800). Two
branches of cylinder response were found depending on whether the flow velocity
is varied gradually or impulsively. The upper branch is realized when the velocity
is increased with small increments. In this case, the 2S mode of vortex shedding is
observed. The lower branch is obtained when the velocity is either changed impulsively
or decreased gradually. This branch is associated with the 2P mode of vortex shedding
as suggested by Williamson & Roshko (1998) from their experiments on forced
oscillation of a cylinder.

Williamson & Govardhan (2004) demonstrated, via a compilation of results from
the literature for various studies, that hysteresis at the low-velocity end of the
synchronization region may exist even in the laminar vortex shedding range. Singh &
Mittal (2005) confirmed this via their numerical simulations. They showed for the first
time that in the laminar flow regime the hysteresis also exists near the higher U ∗ end of
the lock-in regime. They also showed that the hysteretic behaviour persists even when
the cylinder is allowed to oscillate only in the transverse direction. Their computations
were carried out for a fixed Reynolds number (Re = 100) while the reduced speed
was varied. In another computational study, Mittal & Singh (2005) reported that for
certain natural frequencies of the spring–mass system, vortex shedding and self-excited
vibrations of the cylinder are possible for Re as low as 20.

The cause of hysteresis has been a point of discussion among various researchers.
It can be caused either by the nonlinearity of the flow or that of the structural
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components such as the springs and damper. Parkinson (1989), by analysing results
from Feng (1968), suggested that the hysteresis originates from the fluid system
and not from the oscillator. Williamson & Roshko (1988), from their experimental
studies, attributed hysteresis to a sudden change in the wake modes such as 2S and 2P.
Brika & Laneville (1993) confirmed that the hysteresis is indeed due to the flow and
attributed it to the drastic changes in the structure of the vortices that they observed
in their experiments. Singh & Mittal (2005), from their computational study, have
also observed hysteresis. Since the computational model assumes a linear spring, this
confirms that hysteresis can be observed without any nonlinearity in the structural
model.

Mittal & Kumar (1999) carried out a computational study at Re = 325 for a cylinder
that is allowed to vibrate in the in-line and transverse directions. Computations were
carried out for various values of the reduced natural frequency, FN ( = fND/U , where
fN is the natural frequency of the system). Lock-in was observed for a range of the
values of FN . Over a certain range of the structural frequency, the vortex-shedding
frequency of the oscillating cylinder did not match FN exactly; there is a slight
detuning. Mittal & Kumar (1999) referred to this phenomenon as soft-lock-in. They
showed that this detuning disappears when the mass of the cylinder is significantly
larger than the mass of the surrounding fluid it displaces. It has also been pointed out
by Khalak & Williamson (1999) that, for low m∗, synchronization is characterized by
the matching of the vortex-shedding and cylinder vibration frequencies. In general,
at synchronization, the vortex-shedding frequency can be quite different from the
natural frequency.

The effect of blockage on the flow past a stationary cylinder is relatively well
known. For example, Kumar & Mittal (2006a, b) investigated the effect of blockage
on the critical Re at the onset of the primary wake instability. They reported a non-
monotonic variation of the critical Re with blockage. It is found that as the blockage
increases, the critical Re for the onset of the instability first decreases and then
increases. However, a monotonic increase in the non-dimensional shedding frequency
at the onset of instability, with increase in blockage, is observed. There have been very
few studies to investigate the effect of blockage on flow past an oscillating cylinder.
Here, blockage is defined as the ratio of the cylinder diameter to the cross-flow
dimension of the wind tunnel/tow tank or the computational domain.

Prasanth et al. (2006) in their computations of flow past a vibrating cylinder
have shown that even a blockage of 5 % may have a significant effect on the flow.
Interestingly, a blockage of this order results in a small effect for the stationary
cylinder. Barring the study of Brika & Laneville (1993), which was carried out for
a blockage of 1.8 %, the blockage for the investigations discussed above is larger
than 5 %. For example, it is 8.3 % for Feng (1968), 8.4 % for Bishop & Hassan
(1964). Also, it is 4.2 % and 8.3 % for Carberry, Sheridan & Rockwell (2005) and
10 % for Khalak & Williamson(1996). More details on the blockage used for various
experimental studies can be found in Norberg (2003) and Williamson & Govardhan
(2004). The blockage for the numerical investigations by Singh & Mittal (2005) is
5 % and is 6.25 % for the study by Mittal & Tezduyar (1992).

In this paper, the effect of blockage on VIV is confirmed by conducting a systematic
study at low Re for various values of blockage. Unlike the earlier studies (Singh &
Mittal 2005 and Prasanth et al. 2006) the computations here are conducted for a
system that is closer to a physical experiment; fN is fixed. For the first time, it is
shown that the hysteresis at the lower Re range of lock-in reduces with a decrease in
blockage and disappears for blockages of 2.5 % and less.
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Another interesting feature observed in various forced vibration studies is the
sudden jump in phase between the transverse displacement and lift force. This was
first reported by Bishop & Hassan (1963). Ongoren & Rockwell (1988a, b), in their
forced vibration experiments, have observed a phase shift of ∼180◦ when the frequency
ratio fe/f0 was increased through unity. Here fe is the excitation frequency and f0 is
the natural shedding frequency. During this transition, a switch in the phase of the
initially shed vortex to the opposite side of the cylinder is observed. Carberry, Sheridan
& Rockwell (2001) observed an abrupt phase shift of the order of 180◦ with increase
in the frequency of oscillation. In their study, the cylinder was forced to oscillate close
to the Kármán frequency. The jump in phase was also associated with a sudden jump
in the lift force and a change in the mode of vortex shedding. Gu, Chyu & Rockwell
(1994) studied the timing of vortex formation in forced oscillations of a cylinder. They
observed a dramatic change in phase because of the abrupt switching of the vorticity
concentration to the opposite side of the cylinder. This was confirmed by Lu & Dalton
(1996) from numerical calculations. Blackburn & Henderson (1999), from their two-
dimensional numerical study at Re = 500, proposed that the discontinuous switch
in phase of vortex shedding is the outcome of a competition between two vorticity
production mechanisms. They also demonstrated that the switch is associated with a
change in sign of mechanical energy transfer between the cylinder and the flow. In
all the above cases of forced vibration studies, the phase angle is found to be either
0◦ or 180◦, approximately.

Free vibrations can be significantly different from forced vibrations. In the case
of vortex-induced oscillation the motion of the cylinder is intrinsically coupled with
the wake structure, which makes it more complex than forced vibration. In forced
vibrations, one is looking at the wake structure caused by the predefined movement of
the cylinder. Al Jamal & Dalton (2005), via two-dimensional large-eddy simulations,
reported that in the case of self-excited oscillation in the intermediate Re range
(Re = 8000) the phase angle can possibly vary a great deal because of more irregular
oscillation. Khalak & Williamson (1999), in their study of vortex-induced vibrations
at low mass–damping observed that the 180◦ jump in phase angle takes place only
when the flow jumps between upper–lower branches of response. Govardhan &
Williamson (2000) defined two phase angles: vortex phase φvortex between vortex force
and displacement and total phase φtotal between total force and displacement. They
demonstrated that the first mode transition (initial to upper) involves a jump in
φvortex, which is associated with a jump from a 2S to a 2P vortex wake mode and a
corresponding switch in vortex shedding timing. Across the second mode transition
(upper–lower), there is a jump in φtotal. Here, there is no jump in φvortex as it is
not associated with any switch in timing of vortex shedding. Both upper and lower
branches are associated with the 2P mode of shedding. They also concluded that in
the case of high mass–damping, the switch in the timing coincides with the jump in
total phase (φtotal). In his review article, Sarpkaya (2004) pointed out that in a viscous
medium, the added-mass coefficient is very important in determining the phase jump
when the non-dimensionalized mass, m∗, is small. It was shown that a 180◦ phase
shift corresponds to a change in sign of the added mass from positive to negative or
vice versa, depending on the direction of change of fex (the dimensional frequency of
oscillation of cylinder during lock-in).

There are some differences between free vibrations in the laminar regime and at
relatively higher Re. The maximum amplitude of transverse oscillations at low Re in
the laminar regime is ∼0.6D. This is significantly smaller than that observed at larger
Reynolds numbers. Leontini, Thompson & Hourigan (2005) in a recent numerical
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study of flow past an elastically mounted cylinder at Re =200 have reported a
comparison between the high- and low-Reynolds-number effects. They suggested that
the genesis of higher-Re three-dimensional behaviour such as an upper branch can be
seen in lower-Re two-dimensional flows. Their frequency response shows a pseudo-
upper branch when compared to the results of Khalak & Williamson (1999). The
phase difference between lift force and displacement, φ, shows an initial jump of 45◦

and then an almost linear climb to around 120◦. But a lower m∗ was found to show
a similar behaviour of φ as observed in Khalak & Williamson(1999), i.e. a sudden
jump in φ from almost 0◦ to 180◦ was observed. In this work we investigate the phase
between lift and cylinder response at low Reynolds numbers for free vibrations. In
particular we seek answers to the following questions. Does a jump in φ occur at low
Re? Is it accompanied by a change in the mode of vortex shedding? What are the
implications of the jump in φ?

The outline of the rest of the article is as follows. We begin by reviewing
the governing equations for incompressible fluid flow and a rigid oscillator on
spring supports in § 2. Section 3 describes the stabilized space–time finite element
formulation (Tezduyar et al. 1992a, b) utilized to solve the governing equations. The
SUPG (streamline-upwind/Petrov–Galerkin) and PSPG (pressure-stabilizing/Petrov–
Galerkin) stabilization technique (Tezduyar et al. 1992c) is employed to stabilize our
computations against spurious numerical oscillations and to enable us to use equal-
order-interpolation velocity–pressure elements. The problem set-up is defined along
with the boundary and initial conditions in § 4. In this section we also describe the
mesh moving scheme that we use to accommodate the motion of the cylinder. In § 5
we demonstrate the validity of the formulation in computing such flows and establish
the adequacy of the finite element mesh and location of computational boundaries in
computing free vibrations. In addition to studying the variation of peak amplitude
with Re we include the variation of r.m.s. values of cylinder response. The effect
of blockage on the hysteretic vs. intermittent behaviour is very clearly seen on the
plots with r.m.s. values. This suggests that the plots with r.m.s. values may be more
meaningful in VIV than the ones with maximum amplitude. The large unsteady
variation of aerodynamic coefficients is explained via time variation of the pressure
distribution on the cylinder surface.

In § 6 the response of the cylinder and variation of aerodynamic coefficients
along with the synchronization and various branches associated with vortex-induced
vibration at low Re are presented. Section 7 includes a comparison of free vibration
results with forced vibration data from Koopmann (1967). For the first time, the
comparison of the free and forced vibration data is presented on a Ymax/D vs. f ∗ plot
to bring out the differences between the two. The various modes of vortex shedding
and their variation with cylinder vibrations is discussed in § 8. During the transition
from the ‘initial’ to ‘lower’ branch, for low blockage, switching between two modes
of vortex shedding takes place. The difference in the frequency of vortex shedding
of the two modes is captured and confirmed via a Hilbert transform for the first
time for low-Re flows. Next, in § 9 we look at the variation of phase between lift
force and cylinder displacement with Re. We show, for low Re, that the phase jump
occurs at the point where f ∗ reaches a value exactly equal to 1 (and not during the
transition between the initial and lower branch). Unlike at large Re, the phase jump
is not related to a change in the mode of vortex shedding. Instead, it is found to be
related to the pressure variations. Decomposition of the flow into time-averaged and
time-varying components reveals that the intense movement of the stagnation and
peak suction points for the Re associated with large-amplitude vibrations modifies
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Figure 1. A typical finite element mesh for the 5% blockage with 23 644 nodes and 23 280
quadrilateral elements. The location of the various boundaries and the boundary conditions
are also shown.

the time-averaged flow significantly. It is found that even though the instantaneous
flows for Re on either side of the phase jumps are very similar, the time-averaged
and unsteady components exhibit substantial differences. Further, it is shown that the
phase jump is a mechanism to self-limit the amplitude of cylinder response in free
vibrations. We end with a few concluding remarks in § 10.

2. The governing equations
2.1. The incompressible flow equations

Let Ωt ⊂ IRnsd and (0, T ) be the spatial and temporal domains respectively, where nsd

is the number of space dimensions, and let Γt denote the boundary of Ωt . The spatial
and temporal coordinates are denoted by x and t . The Navier–Stokes equations
governing incompressible fluid flow are

ρ

(
∂u
∂t

+ u · ∇∇∇u − f
)

− ∇∇∇ ·σσσ = 0 on Ωt × (0, T ), (2.1)

∇∇∇ · u = 0 on Ωt × (0, T ). (2.2)

Here ρ, u, f and σσσ are the density, velocity, body force and the stress tensor,
respectively. The stress tensor is written as the sum of its isotropic and deviatoric
parts:

σσσ = −pI + T, T = 2µεεε(u), εεε(u) = 1
2
((∇∇∇u) + (∇∇∇u)T ), (2.3)

where p and µ are the pressure and dynamic viscosity, respectively. Both the Dirichlet
and Neumann-type boundary conditions are accounted for, represented as

u = g on (Γt )g, n ·σσσ = h on (Γt )h, (2.4)

where (Γt )g and (Γt )h are complementary subsets of the boundary Γt and n is its unit
normal vector. The details of the boundary conditions for the present problem are
shown in figure 1 and given in § 4. For the freely vibrating cylinder the velocity of the
fluid on the cylinder surface is determined by solving the equations of motion for a
spring-mounted oscillator. The initial condition on the velocity is specified on Ωt at
t = 0:

u(x, 0) = u0 on Ω0, (2.5)

where u0 is divergence free.
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2.2. The equations of motion for a rigid body

A solid body immersed in fluid experiences unsteady forces and in certain cases may
exhibit rigid body motion. The motion of the body, in the two directions along the
Cartesian axes, is governed by the following equations:

Ẍ + 4πFNζẊ + (2πFN )2X =
2CD

πm∗ for (0, T ), (2.6)

Ÿ + 4πFNζ Ẏ + (2πFN )2Y =
2CL

πm∗ for (0, T ). (2.7)

Here, FN is the reduced natural frequency of the oscillator, ζ the structural damping
ratio, m∗ the non-dimensional mass of the body while CL and CD are the instantaneous
lift and drag coefficients for the body, respectively. The free-stream flow is assumed to
be along the x-axis. Ẍ, Ẋ and X denote the normalized in-line acceleration, velocity
and displacement of the body, respectively, while Ÿ , Ẏ and Y represent the same
quantities associated with the cross-flow motion. In the present study, in which the
rigid body is a circular cylinder, the displacement and velocity are normalized by the
diameter, D, of the cylinder and the free-stream speed, U , respectively. The reduced
natural frequency of the system, FN is defined as fND/U where fN is the natural
frequency of the oscillator. Another related parameter is the reduced velocity, U ∗. It
is defined as U ∗ = U/(fND) = 1/FN .

The non-dimensional mass of the cylinder is defined as m∗ = 4m/(πρD2) where m is
the actual mass of the oscillator per unit length and ρ is the density of the fluid. The
force coefficients are computed by carrying an integration, that involves the pressure
and viscous stresses, around the circumference of the cylinder.

3. The finite element formulation
To accommodate the motion of the cylinder and the deformation of the mesh, a

formulation that can handle moving boundaries and interfaces is employed. In order
to construct the finite element function spaces for the space–time method, we partition
the time interval (0, T ) into subintervals In =(tn, tn+1), where tn and tn+1 belong to
an ordered series of time levels: 0 = t0 < t1 < · · · < tN = T . Let Ωn = Ωtn and Γn = Γtn .
We define the space–time slab Qn as the domain enclosed by the surfaces Ωn, Ωn+1,
and Pn, where Pn is the surface described by the boundary Γt as t traverses In. As
is the case with Γt , the surface Pn is decomposed into (Pn)g and (Pn)h with respect
to the type of boundary condition (Dirichlet or Neumann) being imposed. For each
space–time slab we define the corresponding finite element function spaces: (Sh

uuu)n,
(Vh

uuu)n, (Sh
p)n, and (Vh

p)n. Over the element domain, this space is formed by using
first-order polynomials in space and time. Globally, the interpolation functions are
continuous in space but discontinuous in time.

The stabilized space–time formulation for deforming domains is then written as
follows: given (uh)n− , find uh ∈ (Sh

uuu)n and ph ∈ (Sh
p)n such that ∀wh ∈ (Vh

uuu)n,

qh ∈ (Vh
p)n:

∫
Qn

wh · ρ
(

∂uh

∂t
+ uh · ∇∇∇uh − f

)
dΩ +

∫
Qn

εεε(wh) :σσσ (ph, uh) dQ +

∫
Qn

qh∇∇∇ · uh dQ

+

nel∑
e=1

∫
Qe

n

1

ρ
τ

[
ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)
− ∇∇∇ ·σσσ (qh, wh)

]



470 T. K. Prasanth and S. Mittal

·
[
ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − f

)
− ∇∇∇ ·σσσ (ph, uh)

]
dQ

+

nel∑
e=1

∫
Qe

n

δ∇∇∇ · whρ∇∇∇ · uhdQ +

∫
Ωn

(wh)+n · ρ
(
(uh)+n − (uh)−

n

)
dΩ =

∫
(Pn)h

wh · hhdP.

(3.1)

This process is applied sequentially to all the space–time slabs Q0, Q1, . . . , QN−1. In
the variational formulation given by (3.1), the following notation is being used:

(uh)±
n = lim

ε→0
u(tn ± ε), (3.2)∫

Qn

(. . .) dQ =

∫
In

∫
Ωn

(. . .) dΩdt, (3.3)

∫
Pn

(. . .) dP =

∫
In

∫
Γn

(. . .) dΓ dt. (3.4)

The computations start with

(uh)−
0 = u0, (3.5)

where u0 is divergence free.
The variational formulation given by (3.1), includes certain stabilization terms

added to the basic Galerkin formulation to enhance its numerical stability. Details
on the formulation, including the definitions of the coefficients τ and δ, can be
found in the papers by Tezduyar et al. (1992a, b, c). The equations of motion for
the oscillator given by (2.6)–(2.7) are also cast in the space–time formulation in the
manner described in Tezduyar et al. (1992c) and Mittal (1992).

4. Problem description
The cylinder is mounted on elastic supports and is free to undergo transverse as

well as streamwise vibrations. Re is based on the free-stream speed (U ), diameter of
the cylinder (D) and viscosity of the fluid. The non-dimensional mass of the cylinder is
m∗ = 10.0. To encourage high-amplitude oscillations, the structural damping coefficient
is set to zero. The springs in both the transverse and in-line directions are assumed
to be identical and exhibit linear behaviour. Singh & Mittal (2005) carried out
computations for free vibrations for two sets of parameters: (a) Re is fixed (=100)
and FN is varied; (b) FN is fixed (= 1/4.92) and Re is varied. The computations were
carried out for only one value of blockage (B =5 %). Prasanth et al. (2006) presented
results for Re = 100 and varying FN for 1% and 5% blockage. In the present work, it
is assumed that the dimensional natural frequency, fN , of the spring–mass system does
not vary with flow speed. As as result, FN varies with Re. Compared to the situations
in Singh & Mittal (2005) and Prasanth et al. (2006) the present situation is much
closer to an experimental set-up. The mass of the oscillator and the spring stiffness
are chosen such that the natural structural frequency matches the vortex shedding
frequency of a stationary cylinder at Re = 100. This corresponds to the variation in
the non-dimensional natural frequency of the oscillator with Re as FN = 16.6/Re.
With these choice of parameters the flow stays in the regime in which it is expected
to be two-dimensional and laminar.



Vortex-induced vibrations of a circular cylinder at low Reynolds numbers 471

4.1. Boundary conditions

The no-slip condition is applied to the velocity at the cylinder surface. The location
of the cylinder and the flow velocity on its surface are updated at each nonlinear
iteration of the solution to the flow equations. Free-stream values are assigned for
the velocity at the upstream boundary and the stress vector is set to zero at the
downstream boundary. This type of an outflow boundary condition is often known
as the ‘traction free’ condition. On the upper and lower boundaries, the component of
the velocity normal to, and the component of the stress vector along, the boundaries
are prescribed a zero value. The boundary conditions are also shown in figure 1.

4.2. Finite element mesh and mesh moving scheme

The cylinder is placed in a rectangular computational domain whose upstream and
downstream boundaries are located at distance Lu and Ld from the centre of the
cylinder. The lateral boundaries are separated by a distance H . The blockage ratio, B ,
is defined as B = D/H . Figure 1 shows a typical finite element mesh for 5 % blockage.
The mesh moving scheme has been designed such that the mesh in the square box
around the cylinder moves along with it as a rigid body. The location of the outer
boundary is fixed. As a result, the movement of the cylinder causes deformation of
the mesh points lying between the square region and the outer boundary. This kind
of mesh movement is expected to lead to almost no projection errors in the flow
close to the cylinder. This scheme has been used in our earlier work; for example, in
Mittal & Kumar (1999) for single cylinder and in Mittal & Kumar (2001) for a pair
of cylinders.

5. Validation of method and convergence of results
Equal-in-order basis functions for velocity and pressure, that are bilinear in space

and linear in time, are used and 2 × 2 × 2 Gaussian quadrature is employed for
numerical integration. The nonlinear equation systems resulting from the finite-
element discretization of the flow equations are solved using the Generalized Minimum
RESidual (GMRES) technique in conjunction with diagonal preconditioners. In all
the figures for the vorticity field presented in this article, a grey scale based on the
magnitude of vorticity is used for shading. The darker shades of grey represents higher
values of vorticity. To differentiate between positive and negative values, iso-vorticity
contours are also shown. Black contour lines represent negative values of the vorticity
field, while the white lines show positive values.

Re =100 flow past a stationary cylinder was reported by Singh & Mittal (2005)
for various values of blockage. Excellent agreement with aerodynamic coefficients
reported by other researchers is observed. It was also found that a blockage of 5 %
does not have any significant effect on the Re =100 flow past a stationary cylinder.
Next, the case of free vibrations is considered. The Re = 100 (U ∗ ∼ 6.0) flow lies on
the maximum amplitude branch of the cylinder oscillations. It is associated with a
large wake width. This case is utilized to investigate the effect of mesh resolution and
streamwise location of computational boundaries.

5.1. Effect of mesh resolution

Two finite element meshes are utilized to solve the Re = 100 flow past a freely vibrating
cylinder. The details of the finite element mesh and a summary of the response of the
cylinder and the aerodynamic coefficients are given in table 1. For both the cases, the
time step, �t is 0.0625 and the domain size is identical (Lu/D = 10, Ld/D =25.5 and
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Mesh Nodes Elements St Ymax/D Xrms/D X̄/D CLmax
CDrms

C̄D

M7k 7437 7236 0.1643 0.516 0.00494 0.1115 0.1929 0.2486 1.90
M15k 15004 14710 0.1644 0.503 0.00484 0.1100 0.1900 0.2434 1.88

Table 1. Re = 100 flow past a freely vibrating cylinder: effect of mesh resolution. The other
parameters for the computations are �t = 0.0625, Lu/D = 10, Ld/D =25.5 and B = 5 %.

Mesh Nodes Lu/D St Ymax/D Xrms/D X̄/D CLmax
CDrms

C̄D

M7k 7437 10.0 0.1643 0.516 0.00494 0.1115 0.1929 0.2486 1.90
M7k2 7779 15.0 0.1642 0.516 0.00500 0.1110 0.2087 0.2507 1.90
M9k 9603 25.0 0.1644 0.516 0.00505 0.1110 0.2090 0.2550 1.90

Table 2. Re =100 flow past a freely vibrating cylinder: effect of the location of upstream
boundary Lu/D. The other parameters for the computations are Ld/D =25.5 and B = 5 %.

B = 5 %). The initial condition for the simulations is the fully developed unsteady
flow past a stationary cylinder at the same Re. It is observed that the two meshes
result in very similar solutions. From table 1 it is seen that the largest deviation
between the two sets of results is for the maximum amplitude in transverse oscillation
(∼ 2.5 %). This establishes the adequacy of mesh M7k in computing the flow past a
freely vibrating cylinder.

5.2. Effect of time step size

Computations are carried out for two different values of time step to study its
influence on flow past a freely vibrating cylinder. The difference in the maximum
transverse oscillation of the cylinder obtained with �t =0.0625 and 0.0125 is 0.4 %,
approximately. Therefore, a time step of �t =0.0625 is used for all the calculations
in this paper.

5.3. Effect of the streamwise location of the computational boundaries

The effect of the location of both the upstream and downstream boundary on free
vibrations of the cylinder at Re =100 is investigated.

Location of upstream boundary
Computations are carried for three locations of the upstream boundary, Lu/D. The

details of the finite element meshes and the results obtained with them are listed in
table 2. For all the meshes the location of the downstream boundary and blockage
are identical (Ld/D = 25.5, B = 5 %). The results from the three sets of computations
are very similar. Although the maximum lift coefficient is slightly underpredicted for
Lu/D = 10, the amplitude of cylinder response predicted by all three meshes is in
excellent agreement.

Location of downstream boundary
The details of the finite element mesh employed to study the effect of Ld/D and

a summary of the response of the cylinder and aerodynamic coefficients are given in
table 3. Both meshes are associated with the same blockage and location of upstream
boundary (B = 5 %, Lu/D = 10). It is clear from Table 3 that the results from both the
meshes are virtually identical. This reflects the adequacy of Ld/D = 25.5 in computing
the near wake flow and free vibrations of a cylinder for Re = 100.
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Mesh Nodes Ld/D St Ymax/D Xrms/D X̄/D CLmax
CDrms

C̄D

M7k 7437 25.5 0.1643 0.516 0.00494 0.1115 0.1929 0.2486 1.90
M23k 23644 50.0 0.1642 0.510 0.00494 0.1105 0.1950 0.2484 1.89

Table 3. Re =100 flow past a freely vibrating cylinder: effect of location of downstream
boundary Ld/D. The other parameters for the computations are Lu/D = 10 and B = 5 %.
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Figure 2. Variation of (a) the maximum and (b) r.m.s. value of transverse displacement of
the cylinder with Re for various blockage values close to the lower-Re end of lock-in.

5.4. Effect of transverse location of the computational boundaries

The effect of blockage on vortex-induced vibration has not received much attention.
Prasanth et al. (2006) found that the blockage has a very significant effect on the
response of a cylinder undergoing free vibrations. We are aware of only one other
study where the effect of blockage for vibrating cylinders has been reported: the
dependence of the hysteresis on blockage was observed by Stansby (1976) in his
experimental study on forced vibrations of cylinders. Two models were used, with
blockage, based on the tunnel width and diameter of the cylinder, of 3.6 % and 7.2 %.
Hysteresis was observed only with the model with larger blockage.

To investigate the effect of blockage on free vibrations computations with various
values (B = 5 %, 4 %, 3.33 % 2.5 % and 1 %) are carried out. The variation of the
normalized maximum amplitude of the transverse oscillations for different blockages,
near the lower Re range of the synchronization, is shown in figure 2(a). It is seen that
the width of the hysteresis loop reduces with a decrease in blockage. For blockage of
2.5 % and less the hysteretic behaviour completely disappears. A similar behaviour is
observed for in-line oscillations and aerodynamic coefficients. In general, the jump in
cylinder response and aerodynamic coefficients occurs at a slightly smaller Re with
increase in blockage. This can be attributed to the increased local acceleration of
the flow as blockage increases. Figure 2(b) shows the variation of the r.m.s. value of
the transverse oscillations of the cylinder with Re near the lower Re end of lock-in.
The behaviour at low blockage is found to be qualitatively different from that at
high blockage. For example, for the low blockage the increase in the r.m.s. value
of the response amplitude takes place in three stages: a steep jump followed by a
relatively gradual change and then a sharp jump again. The second stage with more
gradual change becomes smaller with increase in blockage and eventually disappears
for B = 3.3 % and higher. Most of the results in the remainder of the paper are
computed with 1 % blockage.
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Figure 3. Variation of (a) maximum transverse oscillation amplitude and (b) r.m.s. value of
the in-line oscillation amplitude of the cylinder with Re for 1 % blockage.
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Figure 4. Variation of the r.m.s. value of the lift and drag coefficients with Re for 1 %
blockage.

6. Free vibrations
6.1. Cylinder response

Figure 3 shows the the variation of the transverse as well as the in-line response of the
cylinder with Re (and U ∗). From figure 3(a) it is observed that the peak amplitude of
transverse vibration is 0.6D, approximately. This is in good agreement with the value
reported by other researchers for this low-Re regime. Figure 3(b) shows the variation
of the r.m.s. value of the in-line oscillation normalized with the diameter of the
cylinder. As expected, the amplitude of the transverse vibration is significantly higher
than that of in-line oscillations. Both the lower and higher Re ends of synchronization
are associated with large amplitudes. The r.m.s. value shows a gradual variation near
the lower Re end of synchronization. Hysteretic behaviour is observed only at the
higher Re end of synchronization.

6.2. Aerodynamic coefficients

The variation of the aerodynamic coefficients is shown in figure 4. The very significant
effect of vibrations on the aerodynamic forces is quite apparent from this figure.
Hysteresis in the force coefficients shows the same trend as the one observed
for cylinder response. Compared to a stationary cylinder, the vibrating cylinder
experiences much larger lift force close to the lower Re range of synchronization.
However, the trend is the opposite at the higher Re range of synchronization. Beyond
Re ∼ 90 the lift coefficient experienced by the vibrating cylinder is smaller than that
felt by a stationary one. The r.m.s. value of lift coefficient for a stationary cylinder
is found to be approximately 1.25 times that for the freely vibrating case beyond
the synchronization region (Re > 140). The maximum r.m.s. value of drag coefficient
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Figure 5. Re = 90 flow past (a) a stationary and (b) a freely vibrating cylinder: variation of
the pressure distribution on the cylinder surface at various time instants during one cycle of
lift coefficient.
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Figure 6. Variation of (a) the non-dimensional vortex shedding frequency and (b) the
frequency ratio, f/fN , with Re for 1 % blockage. Also shown is the reduced natural frequency,
FN = 1/U ∗, and St for the stationary cylinder.

is found to be 0.4 which is very large compared to that for a stationary cylinder.
To investigate this, we study the variation of the pressure on the cylinder surface.
Figure 5 shows the distribution of the pressure coefficient, Cp , on the cylinder surface
for the stationary and moving cylinders at four time instants during a cycle of time
variation of CL for the Re = 90 flow. It is found that while the front stagnation point
for the stationary cylinder moves very little, it has a substantial movement along the
cylinder surface for a vibrating cylinder. Also, the vibrating cylinder is associated with
very large changes in the base pressure coefficient during the lift cycle. This leads to
a very large time variation of CD and hence large value of CDrms

for the vibrating
cylinder.

6.3. Synchronization and branches of cylinder response

Figure 6(a) shows the variation of the non-dimensional vortex shedding frequency
with Re. The non-dimensional natural frequency, FN , along with the non-dimensional
vortex shedding frequency for a stationary cylinder is also shown in the same figure.
The vortex shedding frequency for the vibrating cylinder is affected by its motion for
a wide range of Re.

A useful quantity to study in free vibrations is the frequency ratio, f/fN , shown
in figure 6(b). Here, f is the vortex shedding frequency of the vibrating cylinder. It
has been pointed out in the literature (Khalak & Williamson 1999 and Williamson
& Govardhan 2004) that synchronization/lock-in is defined as the state when the
frequency of the periodic wake vortex mode matches the cylinder oscillation frequency.
These two frequencies may, however, be different from the natural frequency of the
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spring–mass system, i.e. f/fN need not be necessarily equal to 1.0 at lock-in. The
departure of the vortex shedding frequency for the vibrating cylinder from the
shedding frequency for a stationary cylinder for a broad range of Re during lock-in
is quite apparent from figure 6. It is also seen that outside the lock-in region, the
vortex shedding frequency of stationary cylinder shows a small offset from the vortex
shedding frequency of the freely oscillating cylinder. This is mainly caused by the
oscillation of the cylinder and associated change in vortex shedding timing, especially
at the higher Reynolds numbers (Re > 140).

At the lower Re end of the synchronization region, the jump in f/fN occurs
in two stages. The first jump occurs at Re ∼ 81 and signifies the beginning of
the synchronization. Using the terminology of Khalak & Williamson (1996), this
corresponds to the onset of the ‘initial branch’. The vortex shedding frequency for the
vibrating cylinder is much larger than that for a stationary cylinder but is smaller than
the natural frequency. In the second stage, the vortex shedding frequency gradually
approaches the natural frequency. The proximity of f/fN to unity leads to an increase
in the amplitude of cylinder oscillations. At Re ∼ 88 the cylinder attains the maximum
amplitude of oscillation and this marks the onset of the ‘lower’ branch. Details on the
flow characteristics in these regimes are presented later in the paper. At the higher Re

end of the synchronization region, the vortex shedding frequency jumps back to that
observed for a stationary cylinder. It is found that this jump is hysteretic irrespective
of the blockage.

Khalak & Williamson (1996), in their laboratory experiments conducted at much
higher Reynolds numbers for a low mass-damping oscillator, reported three branches
of cylinder response. The first transition from the ‘initial’ to the ‘upper’ branch is
associated with a jump in f/fN and cylinder response and is hysteretic in nature.
The second transition is from the ‘upper’ to ‘lower’ branch and involves intermittent
switching. A final jump in f/fN marks the end of the synchronization regime. In
contrast, at low Re, the upper branch of the cylinder response does not exist.

An interesting observation from figure 6 is regarding the value of Re for which
f/fN assumes a value exactly equal to one. Recall that the mass and the stiffness
of the oscillator has been designed to match the vortex shedding frequency for a
stationary cylinder at Re =100. Although f/fN is nearly equal to one for a large
range of Re, it assumes the exact value of 1.0 at Re ∼ 110 which is approximately
midway in the range of Re for which lock-in is observed. It is shown later in the paper
that the phase between the lift force on the cylinder and its response experiences a
∼ 180◦ jump at the same Reynolds number.

7. Free versus forced vibrations: lock-in boundaries
7.1. Forced vibrations: data from Koopmann (1967)

Several researchers in the past have attempted to understand free vibrations via
controlled experiments with forced sinusoidal oscillations of a cylinder in a free-
stream flow. A review of some of the issues and the corresponding references may be
found in Williamson & Govardhan (2004). Koopmann (1967) carried out laboratory
experiments to determine the minimum oscillation amplitude required to achieve lock-
in for various frequencies of forced vibrations of a cylinder and various Reynolds
numbers. Some of the results from his work are shown in figure 7. The x-axis shows f ∗,
defined as the ratio of the cylinder oscillation frequency (f ) and the vortex shedding
frequency for a stationary cylinder (f0). For each f ∗ there exists a critical oscillation
amplitude beyond which the vortex shedding frequency locks into the oscillation
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Figure 7. Experimental data (from Koopmann 1967) for forced vibrations of a cylinder:
critical amplitude of vibrations needed for lock-in for various values of frequency ratio,
f ∗ = f/f0. f and f0 are the vortex shedding frequency for the vibrating and stationary
cylinder, respectively.

frequency. This critical oscillation amplitude is shown on the y-axis. As expected, the
oscillation amplitude required for lock-in increases with the increase in the departure
of f/f0 from 1.0. The effect of Re in the laminar flow regime is also shown in the
figure. Although there is some effect of Re the general behaviour is quite similar.
The threshold amplitude shown in figure 7 is the smallest vibration amplitude of the
cylinder for which lock-in is observed. From the flow pictures given in Koopmann
(1967) it appears that the presence of the threshold amplitude is associated with the
influence of end effects and transition from slantwise to parallel shedding.

7.2. Free versus forced vibrations

A question that comes to mind is whether there is any consistency between the
amplitude of cylinder oscillations at the onset of lock-in for free and forced vibrations.
A plot of the variation of cylinder oscillation amplitude with f ∗ for free vibrations
for the 1 % blockage is shown in figure 8. Figures 3(a) and 6 have been utilized to
plot this figure. The data for critical amplitude of oscillation for forced vibrations,
shown in figure 7, are also replotted in figure 8. To incorporate the Re effect to some
extent, we use the data for Re = 100 in figure 7 for plotting the branch corresponding
to Re < 100 in figure 8. Similarly, the branch corresponding to Re > 100 in figure 8 is
compared to the data for Re = 200 for forced oscillations.

To aid understanding certain landmark data points are marked in figure 8 with
upper case letters. The corresponding points are also marked in a copy of figure 3(a)
shown in figure 8 in the inset. For example, point A shows the state of the system at
Re =70. It corresponds to a very low-amplitude cylinder response and f ∗ ∼ 1. Along
A-B the amplitude of oscillations increases very gradually while f ∗ holds a value ∼ 1.
At Re ∼ 81 the cylinder response exceeds a certain threshold amplitude and a jump in
the value of f ∗ is observed as indicated by states B and C. For the free vibrations this
is the onset of synchronization. As seen from figure 6 the vortex shedding frequency
is significantly lower than the natural frequency. The states along C-D form the
‘initial branch’. Interestingly, for the forced vibrations all these states lie in the region
of ‘no-lock-in’. At point D the cylinder marginally exceeds the critical amplitude of
forced vibrations needed for lock-in. From D to F2 through E and F1, the amplitude
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Figure 8. Freely vibrating cylinder with 1% blockage: variation of the amplitude of transverse
vibrations with frequency ratio, f ∗ = f/f0. The data from forced vibrations experiments of
Koopmann (1967) from figure 7, and the variation of maximum transverse oscillation amplitude
of the cylinder with Re from figure 3 are also shown for comparison.

of vibration increases to the maximum while f ∗ holds an almost constant value. At
F2 a jump in the vortex shedding frequency (and the vibration frequency) to fN takes
place. During this jump, the amplitude of cylinder response remains almost constant.
F is the new state achieved by the system and it marks the onset of the ‘lower branch’.
All the points along F-G lie on the ‘lower branch’ and are in a state of ‘lock-in’. A
slight increase in Re leads to a loss of synchronization and the system achieves the
state H. This state is associated with a very low amplitude of cylinder vibrations.

Of interest are the states lying along J-G. These states are associated with a
vibration amplitude that is smaller than the threshold value needed for lock-in using
the forced vibrations data from Koopmann. Yet synchronization is observed for free
vibrations for the Re-increasing computations. Another interesting observation is the
manner in which the states along J-G seem to run parallel to the curve for threshold
amplitude required for lock-in for forced vibrations.

Let us begin on the decreasing Re branch starting from the point H. Along H-I
the cylinder vibration amplitude continues to remain low and is in a no-lock-in state.
At I a very slight decrease in Re causes a jump to the lower branch at state J. At
this state the vortex shedding frequency is synchronized with the vibration frequency.
The amplitude of cylinder oscillations is in excellent agreement with the threshold
amplitude required for lock-in for forced vibrations at the corresponding value of f ∗.
The hysteretic behaviour of the oscillator at the higher Re end of the synchronization
is very clear from this figure as well. On further decrease in Re the oscillator exhibits
the same behaviour as for increasing Re. It reaches the lower Re end of initial
branch through states J-K-F2-F1-K1-D-L-C and remains in the non-synchronized
state thereafter.

Essential differences between free and forced vibrations
Figure 8 brings out differences and similarities between free and forced vibrations

with respect to synchronization. Excellent agreement is observed between the critical



Vortex-induced vibrations of a circular cylinder at low Reynolds numbers 479

amplitude of vibrations required for lock-in for free and forced vibrations at the higher
Re end of the synchronization. Point J in figure 8 represents the critical amplitude
of free vibrations, starting from low-amplitude oscillations, to realize lock-in. This
value lies on the curve reported by Koopmann for forced vibrations. However, at
the lower Re end of the synchronization the lock-in with free and forced vibrations
exhibits a difference. Good agreement is observed between the critical amplitude of
cylinder vibrations required for lock-in for forced vibrations and that of free vibrations
at which the vortex shedding frequency jumps close to the natural frequency of the
oscillator (point D). However, lock-in for free vibrations also exist for lower amplitude
along C-D. The vortex shedding frequency in this regime is, of course, significantly
different from the natural frequency of the oscillator.

Effect of initial conditions on lock-in
The effect of initial conditions on the lock-in behaviour for free vibrations is

also apparent from figure 8. The synchronization regime is extended if the cylinder
is already associated with high-amplitude oscillations. This is more prominent for
f ∗ < 1 where a part of the curve G-J for free vibrations runs almost parallel to the
lock-in boundary for forced vibrations. This suggests that the forced vibrations might
be associated with a hysteresis as well. In the original work by Koopmann (1967),
the data for forced vibrations were generated by slowly increasing the displacement
amplitude of the cylinder while holding the vibration frequency constant. This needs
further investigation.

8. Vortex shedding modes
The response of the cylinder follows different branches with variation of Re. These

branches are associated with different modes of vortex shedding. Brika & Laneville
(1993) reported a mode change from 2S in the initial region to 2P in the lower
region of the response of the cylinder. It has been confirmed by the flow visualization
studies of Brika & Laneville (1993) and Williamson & Roshko (1988) that hysteresis
in the cylinder response is the result of drastic change in the structure of vortices. At
low Reynolds number, in the laminar regime, Singh & Mittal (2005) found that the
mode of vortex shedding is primarily 2S. However, a variation of this mode, C(2S),
is observed when the cylinder undergoes high-amplitude oscillations. The jump in the
cylinder response is accompanied by a change in vortex shedding mode: 2S at low
and C(2S) at high oscillation amplitudes. They also reported the existence of a P+S
mode of vortex shedding (a single vortex and one pair of counter-rotating vortices
are released in each cycle of shedding) at Re ∼ 300 and larger.

8.1. Overview of the flow

Instantaneous vorticity fields at various Re are shown in figure 9. At low amplitudes
of transverse oscillations, the classical Kármán shedding (2S) is observed. In the 2S
mode of shedding, a single vortex is alternately shed from each side of the cylinder
during a vortex shedding cycle. Once the cylinder response jumps to the lower branch
it begins to oscillate with large amplitude. The vortices in the wake coalesce giving rise
to the C(2S) mode of vortex shedding. This can be seen, for example, at Re = 86. At
this point the vortex shedding frequency approximately matches the natural frequency
of the body (see figure 6). In the regime 86 <Re < 137, the non-dimensional vortex
shedding frequency reduces with increase in Re. This can also be observed from the
increase in the longitudinal spacing between the vortices in figure 9. Re ∼ 137 marks
the end of synchronization and the longitudinal spacing between the vortices reduces
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Figure 9. Instantaneous vorticity field at various values of Re for the 1% blockage. For
reference, the variation of the transverse amplitude of vibration of the cylinder with Re is also
shown.

once again. The flow structure for Re > 137 is very similar to that for flow past a
stationary cylinder.

Close to the transition between the initial and lower branches of response the flow
is associated with both 2S and C(2S) modes of vortex shedding. The 2S mode occurs
for the low-amplitude response of the cylinder while the C(2S) mode is seen when the
cylinder vibrates with larger amplitude (for example, flow pictures at two different time
instants corresponding to low- and high-amplitude vibrations are shown at Re = 84.2
in figure 9). It is observed that with high blockage only one of the two modes
can occur. Consequently, depending on the initial conditions high- or low-amplitude
oscillations may be realized. This leads to hysteresis. For the low blockage a switch
between the two modes of vortex shedding takes place. Therefore, the transition is
not hysteretic but intermittent.

8.2. Mode switching

We investigate, in more detail, the transition from the initial to lower branch for the
low blockage. The cases with 1 % and 2.5 % blockage display the same behaviour.
Compared to B = 1 %, since the computational domain is smaller for the 2.5 %
blockage, the computational effort required is a little less. Therefore, we report
results for B = 2.5 %. Figure 10 shows the time histories of the cylinder response and
lift coefficient at certain Re during the transition from the initial to lower branch.
The variation of maximum and r.m.s. value of the transverse amplitude of cylinder
oscillations and lift coefficient with Re are also shown in the figure. Although the
maximum value of the cylinder response and lift coefficient show a jump the variation
of the r.m.s. value, with Re, is comparatively gradual.

Figure 10(a) shows the time histories for Re = 83.2, which corresponds to almost
the end of the initial branch. The cylinder oscillations are of fairly low amplitude.
The 2S mode of vortex shedding is observed at all times. Figure 10(b) corresponds to
Re = 83.3. A sharp increase in the maximum values of the lift coefficient and cylinder
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Figure 10. Time histories of the transverse response of the cylinder and lift coefficient for
the 2.5% blockage at various Re during the transition from the initial to lower branch.
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amplitude is observed. The cylinder vibrates with a low amplitude of oscillation
most of the time. However, occasionally it undergoes high-amplitude oscillations.
As the Reynolds number is increased further, the cylinder undergoes high-amplitude
oscillations more frequently. Also, the fraction of time during which the cylinder
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(iv) t = 2295(iii)  t =1875

Figure 11. B = 2.5 %, Re = 83.6 flow past a freely vibrating cylinder: vorticity field at
various time instants. The time instants are marked on figure 10(c).

undergoes high-amplitude oscillations increases. This trend continues up to Re =83.8.
At Re = 84 the cylinder vibrates with high-amplitude oscillations only. This marks
the complete transition to the lower branch.

Figure 11 shows the vorticity field for Re = 83.6 at certain time instants that are
marked on the time histories of Y/D and CL in figure 10. The first frame in figure 11
corresponds to a time instant when the cylinder undergoes relatively low-amplitude
oscillations. The mode of vortex shedding is 2S. The frame corresponding to point
(iii) shows the C(2S) mode of vortex shedding. It is seen from figure 10 that at this
time instant the cylinder is undergoing large-amplitude oscillations. At time instants
corresponding to points (ii) and (iv) the flow can be seen to be switching between the
2S and C(2S) modes. A similar observation is made at other Re in the transitional
regime.

It is seen in figure 11 that the longitudinal spacing between the vortices in the 2S
and C(2S) modes of vortex shedding is slightly different. To confirm this, a frequency
analysis of the time series for Re = 83.9 and 84 is carried out. Figure 12(a) shows
the time histories of the cylinder response for the two Reynolds numbers. Shown in
figure 12(b) is the variation of the non-dimensional frequency for these time histories
based on the time period of each cycle. For Re = 84, the frequency does not change
and stays close to FN . However, a variation in frequency is observed for Re = 83.9. This
is also confirmed from figure 12(c) which shows the time histories of the frequency
of CL obtained by using the Hilbert transform. This is consistent with our earlier
observation of the change in the frequency of vortex shedding (and cylinder response)
for the low- versus high-amplitude cylinder oscillations in the transitional regime. A
similar behaviour was reported by Khalak & Williamson (1999) in their experiments
for higher Re for the transition from the upper to lower branch. The power spectra
of the time histories of the lift coefficient are shown in figure 12(d). The presence of
two frequencies for Re = 83.9 is confirmed from this analysis as well. This analysis,
therefore, confirms the switching between the two modes of vortex shedding for free
vibrations for low blockage.

9. The phase, φ, between CL and Y

We compute the phase, φ, between the lift force and transverse cylinder displacement
by using the Hilbert Transform on the time histories for the lift force and displacement.
Details on the use of this technique can be found in the Khalak & Williamson (1999).
Figure 13 shows the variation of phase with Re for 1 % blockage. The variation of
the amplitude of cylinder vibrations is plotted alongside. Up to Re ∼ 110 the lift is
almost in phase with the transverse motion of the cylinder. A jump to φ ∼ 180◦ takes
place at Re ∼ 110. Interestingly, the jump seems to take place exactly in the middle of
the synchronization regime. This behaviour is similar to the observation of Khalak &
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Figure 12. B =2.5 %, Re = 83.9 and 84 flow past a freely vibrating cylinder: time history of
(a) the transverse response of the cylinder, (b) its frequency calculated from the time period
of each cycle, (c) the frequency of CL calculated using Hilbert transform, and (d) the power
spectra using a fast Fourier transform on the time history of CL.
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Figure 13. The variation of phase, φ, between the lift force and transverse displacement of
the cylinder with Re for 1% blockage. For reference the variation of the maximum amplitude
of the transverse response of the cylinder is also shown.

Williamson (1999) from their experiments at higher Re. They found that the jump in
phase is accompanied by a shift from the upper to lower branch of cylinder response.
For low Re there is no upper branch and, therefore, in the present case the cylinder
continues to remain on the lower branch. Govardhan & Williamson (2000) have
shown that for a freely vibrating cylinder with low mass-damping (m∗ζ ), the phase
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Re = 105 Re=115

Figure 14. B =1% flow past a freely vibrating cylinder: vorticity plots before (Re = 105)
and after (Re = 115) the phase jump. The cylinder is at the peak of oscillation in both cases.

jump is not associated with a sudden change in the timing of vortex formation. Our
computations show that this is true for much smaller Re as well. The phase jump is
not hysteretic; the same behaviour is observed for increasing as well as decreasing
Re.

It is seen from the close-up view in figure 6(b) that the frequency ratio f/fN

achieves a value of 1.0 at Re ∼ 110. This is also the Reynolds number at which the
jump in phase occurs (see figure 13). The experiments by Govardhan & Williamson
(2000) also show that the jump in total phase, φtotal, takes place when the oscillation
frequency is equal to the natural frequency of the structure in vacuum. Note that this
behaviour is intrinsic to a linear oscillator of natural frequency fN which is being
forced at frequency f . It can be shown that the expression for the amplitude of the
oscillations is inversely proportional to (1 − f/fN ). Therefore, the phase between the
force and displacement is expected to show a jump of 180◦ when the frequency ratio,
f/fN , is increased beyond 1.0.

In forced-vibration studies the jump in phase between the lift force and the
transverse cylinder displacement is accompanied by switching of vortex shedding
from one side of the cylinder to the other (Ongoren & Rockwell 1988a, b; Carberry
et al. 2001; Gu et al. 1994; Lu & Dalton 1996). It is seen from figure 14 that unlike
the forced-oscillation studies, there is no substantial change in the vortex shedding
from the cylinder before and after the phase jump in free vibration. If the mode
of shedding does not change abruptly, how does the phase jump take place? What
are the implications of this jump for free vibrations? We attempt to answer these
questions next.

9.1. How does the phase jump take place?

On the lower branch of cylinder response, the power spectra of the time histories of the
lift coefficient show an additional frequency: ∼3St (3 times the Strouhal frequency).
The component of CL corresponding to 3St becomes stronger as Re approaches 115.
In fact, at Re ∼ 115 the component of CL corresponding to 3St is larger than the one
at St , but then decreases compared to the component at St as Re increases further
beyond 115. Figure 15 shows the time histories of the lift coefficient for one cycle
of the fully developed free vibrations at Re =90, 105, 115 and 125. The presence of
a component corresponding to 3St leads to two additional local peaks in the time
history of the lift force. The contribution from 3St overshadows the one from St at
Re = 115 leading to a change in phase. The cylinder response, also shown in figure 15,
in all the cases is almost sinusoidal.

We decompose the total lift force, CLT , in two parts: the viscous, CLV and pressure,
CLP , contributions. Figure 15 shows the pressure and viscous components of the total
lift force for one cycle of cylinder vibration. The viscous component of lift appears
to primarily vary with a frequency corresponding to St and maintains its phase with
cylinder motion. However, the pressure component shows a contribution at frequency
3St and phase change at Re ∼ 115.
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Figure 15. B =1% flow past a freely vibrating cylinder: the time variation of the
contributions of the pressure, CLP , and viscous part, CLV , to the total lift coefficient, CLT ,
during one cycle of the transverse cylinder motion (also shown). (a) Re = 90, (b) Re = 105,
(c) Re = 115, (d) Re = 125.
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Figure 16. B =1% flow past a freely vibrating cylinder: variation of the pressure coefficient,
Cp , on the surface of the cylinder at different Re at a time instant corresponding to the
maximum displacement of the cylinder.

Figure 16 shows the variation of pressure coefficient, Cp , on the surface of the
cylinder at various Reynolds numbers at a time instant when the cylinder is at its
peak displacement. As was also pointed out by Lu & Dalton (1996), Cp attains a
value larger than 1 at some points on the surface of the vibrating cylinder. The
pressure variation on the cylinder surface can be divided in three regions: the front
stagnation point with high Cp and the top and bottom of the cylinder with low Cp

(Stewart et al. 2005). The appearance of phase shift in CLP is primarily caused by the
movement of these three pressure regions and their relative values. From figure 16 it
can be seen that the location of the stagnation point and the maximum suction on the
upper surface of the cylinder is virtually the same for all the Re shown. The maximum
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Re = 90 Re = 125

Figure 17. B = 1% flow past a freely vibrating cylinder: instantaneous vorticity (left) and
pressure (right) fields before (Re = 90) and after (Re = 125) the phase jump. The cylinder is at
peak amplitude of oscillation in both cases.

Re = 90 Re = 125

Figure 18. B = 1% flow past a freely vibrating cylinder: vorticity (left) and pressure (right)
fields for the time-averaged flow for Re = 90 and 125.

suction on the upper surface occurs close to the shoulder of the cylinder. However,
the location of maximum suction on the lower surface of the cylinder is quite different
for the four Re. Compared to Re = 105, the maximum suction at Re = 125 is smaller
and occurs closer to the shoulder of the cylinder. This leads to an overall negative
value of CLP for Re = 125 and a positive value for Re = 105. Thus, the total lift at
Re = 125 becomes out of phase with the cylinder motion.

In order to further investigate the phenomenon of phase jump we decompose the
flow into two components: the time average, (ū, p̄), and perturbation, (u′, p′). At any
time instant, (u, p) = (ū, p̄) + (u′, p′). We choose two Re for the study, 90 and 125,
which lie on either side of the phase jump. Figure 17 shows the instantaneous vorticity
and pressure fields at a time instant when the cylinder is at its peak amplitude of
oscillation. Compared to Re =125, at Re = 90 the oscillation amplitude of cylinder
as well as St is much larger (figures 3 and 6). Therefore, the transverse speed of
the cylinder is significantly larger for Re = 90. As a result, the vibrating cylinder
experiences a more intense movement of the stagnation point as well as the suction
peaks for Re =90 than Re =125. Also, at Re = 90, the vortices are stronger and
the cylinder is associated with a wake of larger lateral width. Figure 18 shows the
time-averaged flow for the two Re. The variation of C̄p along the cylinder surface
is also shown in figure 19(a). Unlike the wake of a stationary cylinder, a set of
counter-rotating vortices is observed in the near wake of the time-averaged flow of
the vibrating cylinder. A similar observation on the average vorticity was made by
Govardhan & Williamson (2001) for the 2P mode at much higher Re (Re = 3900).
The proximity of the counter-rotating vortices to the base of the cylinder at Re = 90
leads to an additional peak in C̄p .

The intense movement of the stagnation and peak suction points for the Re = 90
case results in a value of C̄p much lower than unity at θ =0. Additionally, the base
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Figure 19. B =1% flow past a freely vibrating cylinder: variation of (a) mean pressure
coefficient, C̄p and (b) perturbation pressure coefficient, C ′

p , on the surface of the cylinder
when it is at its peak amplitude of oscillation for Re = 90 and 125.
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Figure 20. B =1% flow past a freely vibrating cylinder: The perturbation vorticity (left) and
pressure fields (right) for Re = 90 and 125. The cylinder is at peak amplitude of oscillation in
both cases.

suction at Re = 90 is much larger than that at Re = 125 as is clearly visible from
figure 19(a). In general, the mean pressure is much lower for the Re =90 flow. Of
the two, the C̄p distribution for the vibrating cylinder at Re = 125 is much closer to
the one observed for a stationary cylinder. Figure 20 shows the perturbation fields
for vorticity and pressure when the cylinder is at peak amplitude of oscillation for
the two Re. The footprint of the time-averaged flow can clearly be seen in these
pictures. Significant differences can be observed between the two set of results. The
perturbation field for Re =125 is similar to that observed for a stationary cylinder.
However, the Re = 90 field clearly shows more flow structures. This is perhaps the
cause of the occurrence of the 3St harmonic in the time variation of lift forces. The
variation of C ′

p along the cylinder surface is shown in figure 19(b). This clearly brings
out the difference between the two cases. While the pressure coefficient shows suction
at the lower surface for Re =125, it remains positive on the entire lower surface of the
cylinder at Re = 90. In addition, the suction on the upper surface is significantly larger
for Re = 90. Consequently, at its peak transverse location, a positive lift is experienced
by the cylinder for Re = 90 while is is negative for Re =125. This shows that the
cylinder motion and lift are in phase for Re =90 and out of phase at Re =125.

9.2. Implications of the phase jump for free vibrations

Our computations of free vibrations give us the time histories of the cylinder response
and forces. The phase between the lift and transverse displacement can be found from
the time histories. It is possible to utilize the time history of the lift coefficient obtained
from the computations to solve for the cylinder response by integrating (2.7). By doing
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Figure 21. B = 1 %, (a) Re = 100 and (b) 130 flow past a freely vibrating cylinder: effect of
the phase difference between the lift force and cylinder displacement on the cylinder response.
The left column shows the results from free vibrations. The right column shows the results for
a computation where the phase is forced to be zero at t = 0 while the data for the aerodynamic
coefficients from the free vibration study are utilized.

this we recover the time history of the cylinder response from the free vibrations. To
investigate the effect of the phase shift between the lift and cylinder displacement we
manipulate the initial condition (cylinder displacement and speed) so that at t = 0
the lift and cylinder displacement are in phase. Equation (2.7) is then integrated by
starting from the changed initial condition and using the time history for the CL

from free vibrations. The time histories of the cylinder response for free vibrations
and with φ(t = 0) = 0 are shown in figure 21. Figure 21(a) shows results for Re =100
while figure 21(b) is for Re =130. At Re = 100, where the lift and cylinder response
are almost in phase during free vibrations, the effect of forcing the initial phase to
zero is not significant. However, at Re = 130 where the lift and cylinder response
are out of phase in free vibrations, forcing φ(t = 0) = 0 leads to very large-amplitude
oscillations of the cylinder. This suggests that the phase shift between the lift force
and cylinder displacement is essentially a mechanism to limit the oscillation amplitude
of the cylinder.

Several researchers have looked at the energy transfer between the oscillator and
fluid. In forced vibration studies, the phase shift between the lift force and the
transverse cylinder displacement is associated with a change in the direction of
energy transfer (Carberry et al. 2001; Blackburn & Henderson 1999; Stewart et al.
2005). The present computations have been carried out with zero structural damping.
Since the flow and the response are periodic, therefore, there is no net energy transfer
per cycle between the fluid and the oscillator.

10. Conclusions
Results have been presented for the free vibrations of a circular cylinder of low

non-dimensional mass (m∗ =10) in the regime of laminar flow (60 < Re < 200). The
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computations have been carried out in two dimensions using a stabilized finite element
method. Lock-in/synchronization is observed for a wide range of Reynolds numbers.
Two branches of cylinder response are identified: initial and lower. These branches
have been established by other investigators for higher Re flow in earlier research.
While the initial branch is associated with low-amplitude vibrations, the cylinder
vibrates with relatively large amplitude on the lower branch. The maximum amplitude
of transverse vibrations of the cylinder is ∼ 0.6D. The vortex shedding pattern on
the initial branch is 2S. It is C(2S) on the lower branch. Hysteresis behaviour near
the lower-Re end of lock-in depends on the blockage. As the blockage is reduced the
size of the hysteresis loop decreases. For blockage of 2.5 % and less the hysteretic
behaviour disappears. Instead, the transition from the initial to the lower branch is
intermittent. A switching between the 2S and C(2S) modes of vortex shedding is
observed in this transitional regime. The mode of shedding is 2S when the cylinder
exhibits low-amplitude oscillations. It switches to the C(2S) mode when the amplitude
of oscillations is large. Also, the frequency of cylinder oscillations and vortex shedding
is marginally larger when the mode of shedding is C(2S). This is confirmed via a
frequency analysis of the time histories of the cylinder response by using Fourier and
Hilbert transforms.

A comparison of free vibration results with experimental data for forced vibrations
from an earlier study is carried out. Excellent agreement for the critical amplitude
required for onset of synchronization is observed. The comparison brings out certain
interesting observations. There is a possibility that the lock-in behaviour in forced
vibration is sensitive to the initial condition, i.e. a hysteresis might exist. This needs
further investigation. Another observation is that the initial branch for free vibrations
seems to lie outside the lock-in region predicted by forced vibrations. It should be
noted though that in the free vibrations the cylinder vibration frequency is lower than
the natural frequency on the initial branch.

The phase angle between lift force and transverse displacement of the cylinder
shows a jump of approximately 180◦ at the middle of the synchronization region.
The jump in phase is found to occur at a point where the frequency ratio f/fN

attains the value 1.0. The jump in phase is not hysteretic in nature. It is also not
associated with any radical change in shedding pattern. Decomposing the total lift
force into viscous and pressure components at various Re reveals that the jump in
phase is caused by the pressure component. The viscous component, on the other
hand, maintains its phase with cylinder motion at all Re. Three important regions
with respect to the pressure are identified. They are the front stagnation point, and
the suction on the upper and lower sides of the cylinder. The change in the phase of
the pressure component is caused by the movement of these three pressure regions
over the surface of the cylinder and a variation in their relative magnitude. To further
understand the phenomenon of phase jump, decomposition of the flow into time-
averaged and perturbation components has been carried out. The time-averaged flow
before (Re = 90) and after (Re = 125) the phase jump shows interesting differences.
While the Re = 125 flow is similar to the mean flow past a stationary cylinder, the
Re =90 flow shows a pair of counter-rotating vortices in the near wake. In general,
the C̄p distribution shows a lower value along the cylinder surface for the Re =90
flow. The perturbation field for the Re =90 flow shows more vortex structures,
compared to that at Re =125, close to the cylinder. The Cp

′ distribution clearly
brings out the flow features responsible for the phase jump. The jump in the phase
appears to be a mechanism to self-limit the maximum amplitude of oscillation of the
cylinder.
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